

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 177 (2004) 4582-4587

SOLID STATE CHEMISTRY

JOURNAL OF

www.elsevier.com/locate/jssc

New solid-state synthesis routine and mechanism for LiFePO₄ using LiF as lithium precursor

Deyu Wang, Hong Li, Zhaoxiang Wang, Xiaodong Wu, Yucheng Sun, Xuejie Huang, Liquan Chen*

Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China

Received 4 August 2004; received in revised form 1 September 2004; accepted 10 September 2004 Available online 11 November 2004

Abstract

 Li_2CO_3 and $LiOH \cdot H_2O$ are widely used as Li-precursors to prepare LiFePO₄ in solid-phase reactions. However, impurities are often found in the final product unless the sintering temperature is increased to 800 °C. Here, we report that lithium fluoride (LiF) can also be used as Li-precursor for solid-phase synthesis of LiFePO₄ and very pure olivine phase was obtained even with sintering at a relatively low temperature (600 °C). Consequently, the product has smaller particle size (about 500 nm), which is beneficial for Li-extraction/insertion in view of kinetics. As for cathode material for Li-ion batteries, LiFePO₄ obtained from LiF shows high Li-storage capacity of 151 mAh g⁻¹ at small current density of 10mA g⁻¹ (1/15C) and maintains capacity of 54.8 mAh g⁻¹ at 1500 mA g⁻¹ (10 C). The solid-state reaction mechanisms using LiF and Li₂CO₃ precursors are compared based on XRD and TG–DSC.

© 2004 Elsevier Inc. All rights reserved.

Keywords: LiF; LiFePO4; Li-precursor

1. Introduction

In recent years, the demand for developing new cathode materials for high-performance lithium ion batteries has increased continuously. LiFePO₄ is one of the most promising materials due to its moderate Listorage capacity and excellent safety. However, its insulating nature leads to poor kinetic performance. It becomes a barrier for practical applications in high-power batteries. Therefore, much effort has been made to improve the performance of this material [1–11] since the first report from Goodenough et al. in 1997 [12,13]. In view of transport properties of ions and electrons and reversible Li-storage, LiFePO₄ possessing small particle size and pure phase simultaneously is the favorite.

Synthesis of LiFePO₄ is mainly performed via solidstate reaction using Li_2CO_3 or $LiOH \cdot H_2O$ as Li-precursor [1,5,6,10–13]. However, we have noticed that Li_3PO_4 is

*Corresponding author.

E-mail address: lqchen@aphy.iphy.ac.cn (L. Chen).

often detected in the final products unless the sintering temperature was increased to 800 °C. High-reaction temperature always leads to large particle size. The presence of impurities or large particle size is not good for achieving satisfactory electrochemical performances. Therefore, new synthesis routine should be developed.

Compared with Li₂CO₃, LiOH \cdot H₂O, and other Li salts, LiF is generally regarded as a stable compound and rarely used for preparing lithium-containing electrode materials. Here, we report that LiF precursor as single lithium source is suitable for preparing LiFePO₄. The reaction temperature to obtain pure phase LiFePO₄ can be decreased to 600 °C. Consequently, the obtained material shows superior electrochemical performance.

2. Experimental

LiFePO₄ was prepared by a two-step solid-state synthesis. Stoichiometric amounts of $FeC_2O_4 \cdot 2H_2O$

^{0022-4596/\$ -} see front matter \odot 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2004.09.013

(Aldrich, 99%), NH₄H₂PO₄ (Beijing Chemicals, 99.5%), and LiF (Beijing Chemicals, 98.5%) were mixed and ground in an agate mortar for 30 min. Then, the powder was calcinated in a tube furnace with flowing Ar–H₂ (92:8 v/v) at 400 °C for 8 h. After it cooling down to room temperature, the sample was reground and maintained at 400, 500, 600, 700 or 800 °C for 24 h under the same atmosphere. Another sample was sintered at 300 °C for 8 h. After grinding, it was maintained at 300 °C for 24 h.

For comparison, samples using Li_2CO_3 , $LiOH \cdot H_2O$ or Li_3PO_4 as Li-precursor were also prepared. For these other raw materials, the preparing process was the same as that for samples obtained from LiF. Samples were prepared from 400 to 800 °C.

In addition, a mixture of $FeC_2O_4 \cdot 2H_2O$ and $NH_4H_2PO_4$ (1:1 in mole) was also sintered under the same condition at 400 and 500 °C, named Inter400 and Inter500, respectively.

A LiFePO₄ electrode is composed of LiFePO₄, carbon black, and polyvinylidene fluoride (PVDF) at a weight ratio of 75:15:10. Lithium foil was used as the counter electrode, $1 \mod L^{-1} \operatorname{LiPF}_6$ dissolved in ethylene carbonate/dimethyl carbonate (1:1 v/v) as electrolyte, and Celgard[®] 2340 as the separator. Test cells were assembled in a M-Braun glove box filled with pure argon. The cells were cycled between 2.0 and 4.5 V vs. Li/Li⁺ at the current density of $10 \operatorname{mA} \operatorname{g}^{-1}$ on Land automatic battery tester (Wuhan, China) at room temperature.

Thermal analysis was performed by a thermo-gravimetric differential scanning calorimetry (TG–DSC) apparatus STA-449C (Netzsch, Germany). Heating rate is 10 °C min⁻¹ in argon atmosphere. The X-ray diffraction (XRD) with CuK α radiation (D/MAX-RC) was used to characterize the structure of the materials. The surface morphology of the powder was observed on Philips XL30S-F1G field emission scanning electron microscope (FMSEM). The fluorine in the sample was detected with SA720 ion selective electrode (ISE).

3. Results and discussion

3.1. Solid-reaction mechanism of LiF as Li-precursor

Fig. 1 shows the XRD patterns of LiFePO₄ synthesized at different temperatures. At 300 °C as shown in Fig. 1a, LiFePO₄ phase is not observed and LiF is the only crystalline substance. At 400 °C, LiFePO₄ phase appears (Fig. 1b). As the sintering temperature is further increased to 500 °C, LiFePO₄ becomes the dominant phase, but LiF and two unidentified peaks still exist (Fig. 1c). When the mixture is sintered at 600–800 °C, single-phase LiFePO₄ are obtained with well-defined olivine structure (orthorhombic *Pnma*) as shown in

Fig. 1. The XRD patterns of the samples obtained from LiF (a) $300 \,^{\circ}$ C, (b) $400 \,^{\circ}$ C, (c) $500 \,^{\circ}$ C, (d) $600 \,^{\circ}$ C, and (e) obtained at $800 \,^{\circ}$ C. * marked in figure belongs to LiF: (111) at 38.70° and (200) peak at 45.00° , partially overlapped with the (122) peak of LiFePO₄ (determined from relative intensities of (122) and (231) peak²²).

Figs. 1d and e. These results indicate that LiF does not react with other precursors below $300 \,^{\circ}\text{C}$ and the formation of LiFePO₄ starts around $400 \,^{\circ}\text{C}$.

Chemical composition of the final compound prepared at 600 °C was Li:Fe:P=0.99:1.00:1.00 determined by inductive coupled plasma (ICP) analysis. No fluorine was detected in the same material by ISE method (resolution $> 10^{-9}$ g fluorine in a liter solution). On the other hand, fluorine was found in the distilled water that was used to absorb the tail gas from the tube furnace. In addition, crystalline NH₄F was detected from the species on the inner wall of the low-temperature end of the furnace. These facts indicate that LiF is decomposed and fluorine is released in the form of HF during the sintering process as discussed later.

The TG/DSC measurement of the starting materials for LiFePO₄ with LiF as Li-precursor is presented in Fig. 2. Two endothermic peaks at 183 and 221 °C in the DSC curve are observed, corresponding to the decomposition of NH₄H₂PO₄ and losing lattice water of FeC₂O₄ · 2H₂O, respectively [14]. No other peaks are found in DSC curves under 390 °C, but continual weight loss is observed in TG curve. The weight loss under 390 °C is 40%. It indicates that FeC₂O₄ should be decomposed and reacted with the decomposed product of NH₄H₂PO₄.

From 390 to 460 °C, an endothermic peak and an exothermic peak appear at 417 and 448 °C in DSC curve, respectively, implying the formation of LiFePO₄ as confirmed by XRD data. There is slight change from 460 to 750 °C in the DSC curve. This may reveal the further nuclearization and grain growth of LiFePO₄. The weight of raw materials does not decrease over

Fig. 2. TG and DSC curves of the precursors composed of LiF, NH₄H₂PO₄ and FeC₂O₄ · 2H₂O (1:1:1 in mole). The measurement was done over the temperature range from ambient to 900 °C at a heating rate of 10 °C min⁻¹ in argon.

Fig. 3. TG–DSC curves of $FeC_2O_4\cdot 2H_2O$ between ambient and 600 $^\circ C$ in argon.

730 °C. The total weight loss from 390 to 730 °C is 10.5%.

In order to understand the mechanism of this solidstate reaction clearly, thermal analysis of precursors is done. Fig. 3 is the TG/DSC curves of pure Fe- $C_2O_4 \cdot 2H_2O$. The appearance of two peaks in the DSC curve indicates that FeC₂O₄ · 2H₂O loses lattice water first and then decomposes. In the TG curve, raw materials lose 20.0% of total weight under 220 °C, the same as predicted weight loss of losing lattice water. From 220 to 300 °C, the weight decreases slightly (2.7%), and weight loss is 37.2% when the temperature increases to 420 °C. The total weight loss from 220 to 420 °C is consistent with the weight loss of FeC₂O₄ decomposition, but main weight loss occurs above 300 °C. When the sintering temperature is over 420 °C, the weight does not decrease any more.

Fig. 4. TG–DSC curves of mixture including $NH_4H_2PO_4$ and $FeC_2O_4\cdot 2H_2O$ (1:1 in mole) between ambient and 600 $^\circ C$ in argon.

Fig. 4 is the TG/DSC curves of the mixture of FeC₂O₄ · 2H₂O and NH₄H₂PO₄ (1:1 in mole). Except for $NH_4H_2PO_4$ decomposition and $FeC_2O_4 \cdot 2H_2O$ losing lattice water, an endothermic peak at 390 °C is found. It corresponds to the decomposition of FeC₂O₄ confirmed by the thermal analysis of pure $FeC_2O_4 \cdot 2H_2O$ (Fig. 3). However, the weight loss from 300 to 420 °C is 13.1%, much less than the theoretical value (24.4%). Considering the results of Fig. 3, it means that more FeC_2O_4 decomposes under 300 °C due to the existence of NH₄H₂PO₄. Similarly, the disappearance of the decomposing peak of FeC₂O₄ in Fig. 1 is caused by the addition of LiF and NH4H2PO4. According to the above results, the peaks at 417 and 448 °C in Fig. 1 should be related to further reaction of an intermediate with LiF.

The mixture of $FeC_2O_4 \cdot 2H_2O$ and $NH_4H_2PO_4$ (1:1 in mole) was sintered alone under the same condition at 400 °C and 500 °C, respectively, named Inter400 and Inter500. Fig. 5 is their XRD patterns. The strongest peaks of two samples are located at 29.38° and 30.26°, and at 29.34° and 30.28°, respectively. They are at the same positions with the peaks of the two unidentified peaks in the final compound prepared at 400 and 500 °C as shown in Figs. 1b and c. It indicates clearly that the unidentified compound should be an intermediate resulted from the solid-state reaction between $FeC_2O_4 \cdot 2H_2O$ and $NH_4H_2PO_4$. Unfortunately, the phase cannot be identified based on current knowledge.

Based on the above result and analysis, we suppose that the whole solid-state reaction process can be divided into two main steps when LiF is used as Liprecursor.

Firstly, $NH_4H_2PO_4$ and $FeC_2O_4 \cdot 2H_2O$ decompose and form an intermediate, as shown in Eq. (1). In this step, the weight loss should be 44.7%, higher than weight loss under 390 °C in experiments (40.0%). The second step is the reaction between the intermediate and

Fig. 5. The XRD patterns of the Inter400 and Inter 500.

LiF to produce LiFePO₄ and give off HF gas (in Eq. (2)). This step starts around 400 °C. The weight loss above 390 °C is 10.5%, which includes the decomposition of LiF (6.2%, the calculated value) and the uncompleted reaction in the first step.

HF produced in Eq. (2) is taken away by flowing gas (Ar/H_2) and reacts partly with ammonia to form NH_4F (Eq. (3)). This is the reason why white powder was stuck on the inner wall in the low temperature end of the tube furnace. The rest of HF gas is flown into the distilled water, so fluorine was detected in the distilled water that absorbed the protected air.

$$NH_4H_2PO_4 + FeC_2O_4 \cdot 2H_2O$$

$$\rightarrow inter(s) + NH_3(g) + H_2O(g)$$

$$+ CO_2(g) + CO(g) (<400 \,^{\circ}C)$$
(1)

inter + LiF \rightarrow LiFePO₄(s) + HF(g) (>400 °C) (2)

$$HF + NH_3 \rightarrow NH_4F \tag{3}$$

Based on the above discussion, we believe that the Inter400 (or Inter500) should include Fe, H, and P in a mole ratio of 1:1:1. Actually, the mole ratio of Fe and P are equally determined by ICP. In addition, the Inter400 contains 0.58 wt% hydrogen detected by Vario EL, roughly equal to the theoretical amount of 0.66 wt%. Therefore, it is plausible that the intermediate compound (Inter400 or Inter500) is FeHPO₄. However, structural information of FeHPO₄ is not available, and a clear identification of the intermediate needs further study.

3.2. Li_2CO_3 as Li-source for comparison

For comparison, the TG–DSC curves using Li_2CO_3 as the Li-precursor to prepare LiFePO₄ is shown in Fig. 6.

Fig. 6. TG and DSC curves for the precursors composed of Li₂CO₃, NH₄H₂PO₄ and FeC₂O₄ · 2H₂O (0.5:1:1 in mole). The measurement was done over the temperature range from ambient to 900 °C at a heating rate of 10 °C min⁻¹ in argon.

Fig. 7. The XRD patterns of the samples from Li₂CO₃. (A) 600 °C, (B) 700 °C, and (C) 800 °C.

The DSC curve under 420 °C is similar to that of Fig. 4. The weight loss under 420 °C is 49.3% higher than the total weight loss of $NH_4H_2PO_4$ and $FeC_2O_4 \cdot 2H_2O$ (43.1%), indicating that Li_2CO_3 starts to decompose at a lower temperature. From 420 to 770 °C, a hump exothermic peak appears at 471 °C, which should correspond to the formation of LiFePO₄.

The XRD patterns of LiFePO₄ synthesized from Li_2CO_3 at 600–800 °C are shown in Fig. 7. Although LiFePO₄ is the dominant phase sintered at 600 °C, Li_3PO_4 and another intermediate (perhaps $Fe_3(PO_4)_2$) obviously exist (Fig. 7A). When the sintered temperature is increased to 700 °C, the peaks of Li_3PO_4 are still apparent (Fig. 7B). Only the sample prepared at 800 °C shows a pure olivine structure without any impurity.

Fig. 8. The XRD patterns of a mixture of Li_2CO_3 and $NH_4H_2PO_4$ (1.5:1 in mole) kept for 3 days after grinding by hand.

It is noticed that Li_2CO_3 and $NH_4H_2PO_4$ can react at room temperature to form Li_3PO_4 (1.5:1 in mole, XRD confirmed, Fig. 8) and $NH_4H_2PO_4$ and $FeC_2O_4 \cdot 2H_2O$ cannot react. So it is believed that certain amount of Li_3PO_4 should be formed firstly during grinding in practical production.

According to the above results, the formation of Li_3PO_4 is unavoidable when Li_2CO_3 is used as Liprecursor. So we also used Li_3PO_4 as Liprecursor to prepare LiFePO₄. It is only at 800 °C that impurities are not detected in the sample prepared. Intense grinding may decrease the final temperature to obtain pure LiFePO₄ when Li_2CO_3 or Li_3PO_4 is used as lithium source.

3.3. SEM and electrochemical performance

Fig. 9 shows the SEM images of LiFePO₄ from Li_2CO_3 and LiF. The particles of samples prepared at 600 °C (Figs. 9a and b) are homogeneous with the particle size of about 500 nm. When the sample from Li_2CO_3 is sintered at 800 °C, the particle size is over 5 µm (Fig. 9c), much larger than that of samples prepared at 600 °C.

Fig. 10 presents the charge–discharge curves of LiFePO₄ prepared from LiF and Li₂CO₃. The cell voltage profile of the samples shows a flat plateau around 3.4 V. The sample from LiF shows a capacity of 151 mAh g^{-1} , and a capacity of only 97 or 45 mAh g^{-1} for the samples from Li₂CO₃. Samples from Li₂CO₃ exhibit poor capacity due to the existence of impurities (sintered at 600 °C) or the large particle size of LiFePO₄ (sintered at 800 °C).

As-mentioned above, one of the serious drawbacks of olivine $LiFePO_4$ is poor rate capability. However, the best sample in our experiments exhibits relatively good

Fig. 9. SEM images of samples investigated in this study: (a) sample prepared from LiF at 600 $^{\circ}$ C, (b) the sample obtained from Li₂CO₃ at 600 $^{\circ}$ C, and (c) the sample sintered from Li₂CO₃ at 800 $^{\circ}$ C.

rate performance, as shown in Fig. 11. All cells were charged under the current density of 10 mA g^{-1} to 4.5 V and discharged under specific current density to 2.0 V. When the applied current density is 1000 mA g^{-1} (7 C), the delivered capacity is 72.5 mAh g^{-1} . The LiFePO₄ cell

Fig. 10. The second charge-discharge curve of prepared samples.

Fig. 11. The rate performance of LiFePO_4 from LiF prepared at 600 °C. Inset means the discharge curves of the same material at the various current densities.

still exhibits 54.8 mAhg^{-1} when the current density is increased to 10 C. The insets of Fig. 11 are the profiles of discharge curves of LiFePO₄ with the various current densities from 50 to 1500 mAg^{-1} . The rate performance of LiFePO₄ is better than expected.

In brief, LiFePO₄ prepared from LiF shows good electrochemical performance. Our studies show that LiF is a better Li-precursor for scale-production in all aspects except producing HF gas during preparation.

Fortunately, HF is not very difficult to deal with in industry.

4. Conclusion

We demonstrated that pure phase LiFePO₄ can be prepared using LiF as the single lithium source in a solid-state reaction at 600 °C. This reaction could be divided into two main steps. Firstly, FeC₂O₄ · 2H₂O and NH₄H₂PO₄ are decomposed and reacted to produce an intermediate. Then LiFePO₄ is obtained through the reaction of LiF and the intermediate. Our experiments show that LiF is more suitable than Li₂CO₃ and Li₃PO₄ for the preparation of LiFePO₄. Consequently, the sample prepared from LiF shows good electrochemical performance.

Acknowledgment

This work was supported by the National 973 Program (Contract No. 2002CB211802).

Reference

- A. Yamada, S. Chung, K. Hinokuma, J. Electrochem. Soc. 148 (2001) A224.
- [2] N. Ravet, J. Goodenough, S. Besner, et al., 196th Meeting of the Electrochemical Society, Hawaii, USA, 127, 1999.
- [3] H. Huang, S. Yin, L. Nazar, Electrochem. Solid-State Lett. 4 (2001) A170.
- [4] S. Le Franger, F. Cras, C. Bourbon, H. Rouault, Electrochem. Solid-State Lett. 5 (2002) A231.
- [5] G. Li, H. Azuma, M. Tohda, J. Electrochem. Soc. 149 (2002) A743.
- [6] Z. Chen, J.R. Dahn, J. Electrochem. Soc. 149 (2002) A1184.
- [7] N. Ravet, Y. Chouinard, J. Magnan, et al., J. Power Sources 97–98 (2001) 503.
- [8] S. Yang, Y. Song, P. Zavalij, M. Whittingham, Electrochem. Commun. 4 (2002) 239.
- [9] F. Croce, A. D' Epifanio, J. Hassoun, et al., Electrochem. Solid-State Lett. 5 (2002) A47.
- [10] S. Chung, J. Bloking, Y. Chiang, Nature mater 2 (2002) 123.
- [11] S.Q. Shi, L.J. Liu, C.Y. Ouyang, D.Sh. Wang, Zh.X. Wang, L.Q. Chen, X.J. Huang, Phys. Rev. B 68 (2003) 195108.
- [12] A. Padhi, K. Nanjundaswamy, J. Goodenough, J. Electrochem. Soc. 144 (1997) 1188.
- [13] A. Padhi, K. Nanjundaswamy, S. Okada, J. Goodenough, J. Electrochem. Soc. 144 (1997) 1609.
- [14] J. Dean (Ed.), Lange's Handbook of Chemistry. McGraw-Hill Book Com., thirteenth ed. (1985) pp. 4–16 and 19.